Anaesthesia recommendations for patients suffering from

**Stickler syndrome**

<table>
<thead>
<tr>
<th>Disease name:</th>
<th>Stickler syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ICD 10:</strong></td>
<td>Q87.5</td>
</tr>
<tr>
<td><strong>Synonyms:</strong></td>
<td>Marshall-Stickler, Wagner-Stickler hereditary arthro-ophthalmopathy</td>
</tr>
</tbody>
</table>

First characterised by Stickler in 1965, Stickler syndrome is a progressive hereditary arthro-ophthalmopathy. It is thought to have a prevalence of 1 in 7,500-10,000, making it the commonest heritable disorder of connective tissues.

---

- Medicine in progress
- Perhaps new knowledge
- Every patient is unique
- Perhaps the diagnostic is wrong

---

Find more information on the disease, its centres of reference and patient organisations on Orphanet: [www.orpha.net](http://www.orpha.net)
Disease summary

It can affect several different systems and can present to various specialities at many chronological stages:

1. **Airway and orofacial structures**
   a. characteristic face (malar hypoplasia, flat nasal bridge, micro/retrognathia)
   b. acute upper airway obstruction
   c. simple posterior cleft palate
   d. manifests as part of Pierre Robin Sequence (PRS)

2. **Auditory**
   a. hearing loss, predominantly sensorineural but also conductive or mixed.

3. **Ophthalmic**
   a. high refractive error (myopia).
   b. cataracts
   c. vitreous abnormalities
   d. progressive choroidoretinopathy with exudative and rhegmatogenous detachment leading potentially to blindness.

4. **Skeletal**
   a. Spine: Scoliosis, endplate changes, Schmorl nodes, platyspondylia, Scheuermann like kyphosis, ossification of anterior longitudinal ligament, Forestier disease, bamboo spine. High incidence (85%) of 85% chronic back pain
   b. Femoral: Protrusio acetabuli, coxa valga, femoral head failure or slipped upper femoral epiphyses (SUFE) and hip osteoarthritis (OA), usually in the third and fourth decade.
   c. Other: Patella instability

It is divided into several subtypes. Types 1-3 are inherited in an autosomal dominant pattern, the other types are autosomal recessive. Across the subtypes within different families various genetic loci have been described.

- Type 1 (COL2A1)
- Type 2 (COL11A1)
- Type 3 (COL11A2) non-ocular
- Others (COL9A1/COL9A2/COL9A3/LOXL3)
The phenotypic spectrum is wide, and patients can present prenatally through to later in life and the age at clinical manifestation is very variable.

Phenotypic variability, multi-system involvement and the wide age range at presentation make diagnosis challenging and often delayed. There is also significant clinical overlap with other syndromes that have auditory, ophthalmic and joint involvement. Patients may be seen by multiple healthcare professionals before a diagnosis is made. Diagnostic criteria for patients with type 1 Stickler syndrome are available, though they are primarily used in research settings.

Several studies have demonstrated this diagnostic challenge, including retrospective studies looking for Stickler patients presenting to ophthalmology departments. 11-51% of patients presenting to cleft palate teams with Pierre-Robin sequence, (micrognathia, retroglossia +/- cleft palate) will ultimately be diagnosed with Stickler syndrome.

Early diagnosis is important in terms of instituting preventative eye treatment and giving genetic counselling to the family. A high index of suspicion is important for patients with constellations of audiological, ophthalmic, orthopaedic and airway problems.

Rare associations/presentations:

- One fatality associated with the migration of an indwelling infra-orbital catheter presumed secondary to collagenopathy.
- Mitral valve disease: two conflicting studies outlined later and two case reports
- Hypertrophic cardiomyopathy
- Brown Sequard syndrome with cervical spondylosis and myelopathy
- Cervical Spine Dysmorphism
- Peripheral neuropathy
- Immunoglobulin deficiency
- Von Willebrand disease
- Giant cell granuloma
- Stapes ankyloses

**Typical surgery**

Stickler syndrome patients can present to a variety of clinicians for elective and emergency procedures.

Neonatal: difficult airway management at birth should be foresee

Airway: acute upper airway obstruction may be require mandibular advancement surgery such as mandible distraction osteogenesis, tongue-lip adhesion or glossopexy, tracheostomy

Plastics: cleft palate may require surgery, with possible revisions for naso-oral fistulae or velopalatine insufficiency.
Ocular: Prophylactic laser/cryo therapy may be needed for the prevention of retinal detachment or giant retinal tears. The treatment of retinal detachment/tears contemplate vitrectomy, scleral buckling procedures, cataract surgery. According to one case report, patients may develop hyphema

Audiological: Investigation of of hearing loss is recommended at 6-12 month intervals and may require auditory brainstem reflex testing. Management of hearing loss may require transtympanic drains, bone anchored hearing aids, cochlear implants and occasionally stapedectomy for stapes ankylosis.

Orthopaedic: commonly hip procedures for the treatment of early femoral head failure (SUFE, femoral head necrosis, hip osteoarthritis leading to hip arthroplasty) are needed; less commonly patients are seen for knee evaluation for patella instability and arthropathy and joint replacement surgery.

Spinal: scoliosis management may be required.

### Type of anaesthesia

Published data on the types of anaesthesia provided is limited. Airway, cleft palate and significant spinal surgery necessitates general anaesthesia. Despite the spinal anomalies, neuraxial/regional anaesthesia can be considered on a case by case basis for lower limb procedures.

### Necessary additional diagnostic procedures (preoperative)

Various papers have looked at plain radiographs and CT imaging for craniofacial measurements to predict surgical outcome from airway manipulation surgery. There is no evidence to suggest this aided the prediction of the difficulty of airway management.

The incidence of mitral valve prolapse was thought to be significantly higher in patients with Stickler syndrome secondary to a study and case reports showing rapidly progressive mitral valve regurgitation. Subsequent larger studies have refuted this saying the incidence of mitral valve and other valve disease in SS was not higher than in the general population thus impacting on the operative work-up and use of prophylactic antibiotics in SS.

Each patient should have a full history and examination and if indicated further cardiac investigations (ECG, ECHO as required).

There are very rare associations with the Stickler syndrome as detailed above that may merit further investigation should history and examination warrant it.

### Particular preparation for airway management

In Stickler syndrome, difficulties with facemask ventilation, oxygenation and intubation can be expected.

The published data on general anaesthesia lean towards a volatile or slow intravenous induction technique maintaining spontaneous breathing.
Airway management needs mirrors the wide variability in phenotype for Stickler syndrome. Location, personnel and equipment are required to anticipate difficult facemask ventilation and difficult intubation require planning.

Location: Theatre complex, delivery suite.

Personnel: Senior anaesthetist, ENT surgical team, neonatal teams.

Equipment: Direct and indirect videolaryngoscopes and suitable airway adjuncts, progressing to fibre-optic intubation and ultimately surgical airway or wake up dependent on the clinical situation.

<table>
<thead>
<tr>
<th>Particular preparation for transfusion or administration of blood products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concurrent Von Willebrand disease has been reported. Management should involve haematology colleagues. There is no other particular preparation for anticoagulation specific to Stickler syndrome.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Particular preparation for anticoagulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not reported.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Particular precautions for positioning, transport or mobilisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with Stickler syndrome can initially have hypermobile joints with a progressive arthropathy. Therefore, particular attention should be made to joint support and positioning to prevent iatrogenic injury.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probable interaction between anaesthetic agents and patient's long-term medication</th>
</tr>
</thead>
<tbody>
<tr>
<td>No long-term medications are particular to Stickler syndrome.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anaesthesiologic procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticipation of and preparation for a difficult airway.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Particular or additional monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>No particular monitoring required for Stickler syndrome.</td>
</tr>
</tbody>
</table>
Possible complications

For the anaesthetist, the main issues surround managing the difficult airway for both elective and emergency procedures.

Postoperative care

In the neonatal and infant period, post-operative airway obstruction has been documented. This has been seen particularly in patients with acute airway obstruction and occasionally cleft palate. This has necessitated the use of prone positioning techniques, naso-pharyngeal prongs, continuous positive airway pressure, (CPAP) and ultimately tracheostomy.

Information about emergency-like situations / Differential diagnostics

caus" by the illness to give a tool to distinguish between a side effect of the anaesthetic procedure and a manifestation of the disease

Common emergency procedures include upper airway obstruction management and interventions such as prone positioning, naso-pharyngeal airway, CPAP, tracheosotomy. In addition, retinal detachment may be an emergently and its surgical interventions promptly performed.

Ambulatory anaesthesia

Published data regarding ambulatory anaesthesia for Stickler syndrome is limited.

In the younger age groups, concerns exist regarding the use of opiate analgesia where airway obstruction is a feature.

There is one case report of a fatality of an adult patient at home having local anaesthetic injected into an indwelling orbital catheter that had migrated centrally.

Obstetrical anaesthesia

No published data/experience of the management of patients with Stickler syndrome in pregnancy or labour exists. If difficult airway management is anticipated compounded by the potential difficulties of pregnancy then avoiding general anaesthesia would be advisable. Advanced planning of regional intervention is advisable. There are spinal considerations of note potentially complicating but not necessarily contra-indicating neuroaxial techniques. A plan should be made depending on maternal choice and global anaesthetic assessment.

Pharmacological considerations

No published data on pharmacological interactions exists.

www.orphananesthesia.eu


29. Carroll C, Papaioannou D, Rees A, Kalenthaler E. The clinical effectiveness and safety of prophylactic retinal interventions to reduce the risk of retinal detachment and subsequent vision loss in adults and children with stickler syndrome: A systematic review. Health Technology Assessment, April 2011, vol./is. 15/16(1-68), 1366-5278


32. Bowling EL, Brown MD, Trundle TV. The Stickler syndrome: case reports and literature review. Optometry (St. Louis, Mo.), March 2000, vol./is. 71/3(177-182), 1529-1839


46. Baylis A.; Dixon A.; Kinter S.; De Luca K.VPD management in syndromic populations: ASHA SIG5 challenging cases panel. Cleft Palate-Craniofacial Journal, May 2014, vol./is. 51/3(e11), 1055-6656 (May 2014)


48. Mingo, Katie M; Sidman, James D; Sampson, Daniel E; Lander, Timothy A; Tibesar, Robert J; Scott, Andrew R. Use of External Distractors and the Role of Imaging Prior to Mandibular Distraction in Infants With Isolated Pierre Robin Sequence and Stickler Syndrome. JAMA facial plastic surgery, Mar 2016, vol. 18, no. 2, p. 95-100, 2168-6092 (March 1, 2016)


52. Letts, Merv MD, FRCSC; Kabir, Atif MD; Davidson, Darin. The Spinal Manifestations of Stickler’s Syndrome. Spine 15 June 1999 - Volume 24 - Issue 12 - p 1260-1264
These guidelines have been prepared by:

Author  
David Porter, Anaesthesiologist, Great Ormond Street Hospital, London, United Kingdom  
daveyp007@hotmail.com

Peer revision 1  
Marco Cattalini, Pediatric Clinic, University of Brescia and Spedali Civili di Brescia, Brescia, Italy  
marco.cattalini@gmail.com

Peer revision 2  
Frederic Acke, Department of Otorhinolaryngology, Ghent University/Ghent University Hospital, Ghent, Belgium  
frederic.acke@ugent.be

Please note that this guideline has not been reviewed by an anaesthesiologist but by two disease experts instead.