

Recomendações Anestésicas para

Síndrome de Allgrove

Nome da doença: Síndrome de Allgrove

ICD 10: E27.4

OMIM:

Sinônimos: Síndrome triplo A, Síndrome "4A", Síndrome achalasia-addisonianismo-

alacrimia

Sumário da doença: A Síndrome de Allgrove (SA) é um distúrbio autossômico recessivo raro caracterizado por acalasia da cárdia, alacrimia e insuficiência adrenal, que geralmente é resistente ao hormônio adrenocorticotrópico (ACTH) e anormalidades neurológicas. Identificaram-se mutações no gene AAAS, localizado no cromossomo 12q13 (gene da queratina tipo 2), que codifica a proteína ALADIN. IVS14 e EVS9 são as mutações mais comuns. A alacrimia é um sintoma precoce e patognômico, mas acalasia (50 a 100%) e insuficiência adrenal (20 a 54%) são as características mais comuns da apresentação. Distúrbios autonômicos e outros sintomas neurológicos (10-23%) são raros. Os pacientes podem desenvolver uma combinação variável de polineuropatia sensório-motora amiotrófica, disartria, hiperreflexia, fraqueza muscular, demência, função autonômica anormal, disfunção erétil (adulto) e comprometimento intelectual. O diagnóstico geralmente é realizado na primeira década de vida, quando se apresenta com disfagia, vômito e incapacidade de crescimento devido a acalasia, hiperpigmentação da pele, choque por insuficiência adrenal ou convulsões e coma por hipoglicemia grave. Também podem ser vistas faces dismórficas típicas, incluindo face longa e fina, filtro longo, lábio superior estreito, rima bucal voltada para baixo e cílios esparsos. A ceratite punctata é a complicação mais comum da alacrimia. Pacientes com insuficiência adrenal geralmente recebem uma dose de manutenção de um glicocorticóide como a hidrocortisona. A maioria dos pacientes com acalasia requer dilatações pneumáticas frequentes ou intervenções cirúrgicas como a miotomia de Heller.

A medicina está em desenvolvimento

Talvez haja novo conhecimento

Cada paciente é único

Talvez o diagnóstico esteja errado

0

Encontre mais informações sobre a doença, os seus centros de referência e organizações de pacientes na Orphanet: www.orpha.net

Cirurgia típica

Miotomia de Heller para acalasia da cárdia (aberta ou laparoscópica), dilatação com balão do esôfago sob controle endoscópico.

Tipo de anestesia

Anestesia geral com vias aéreas controladas por tubo endotraqueal é a prática padrão.

Exames adicionais pré-operatórios necessários (além do cuidado padrão)

Deglutição de bário, manometria esofágica e endoscopia digestiva alta para acalasia do cardía.

Níveis de cortisol e testes de estimulação com ACTH, eletrólitos séricos e glicose sérica para insuficiência adrenal.

Teste de Schirmer para alacrimia.

Testes de disfunção autonômica, como frequência cardíaca e resposta da pressão arterial ao repouso, teste ocular com pilocarpina e teste de suor.

O comprometimento motor ou sensorial deve ser documentado em consulta com um neurologista para precauções médico-legais.

Preparação específica para o manejo da via aérea

Os pacientes são propensos a infecções recorrentes do trato respiratório devido a regurgitação. Os sintomas do trato respiratório superior e inferior devem ser descartados. As infecções ativas devem ser otimizadas. A cirurgia deve ser adiada, se necessário.

Idealmente, os tubos endotraqueais com balonete devem ser usados para proteção das vias aéreas e para evitar microaspirações.

Bloqueadores do receptor H2 ou inibidores da bomba de prótons podem ser administrados para profilaxia por aspiração e para a prevenção de úlceras pépticas devido à dose de estresse de esteróides.

Aspiração e descompressão do conteúdo estomacal e esofágico por sonda nasogástrica antes da indução.

Preparação específica para transfusão ou administração de hemoderivados

A manutenção do líquido intravenoso deve ser uma dextrose contendo líquido como solução salina a 0,45% em dextrose a 5%. A solução de Ringer lactato deve ser usada para perdas intra-operatórias.

Não existem contraindicações à transfusão de sangue, precauções rotineiras de correlação cruzada e relacionadas à transfusão.

Preparação específica para anticoagulação

Nenhuma precaução ou requisito específico mencionado na literatura.

Precauções específicos para posicionamento, transporte e mobilização

Os pacientes são propensos a distúrbios autonômicos. O posicionamento e o transporte devem ser lentos e graduais. A laparoscopia pode exigir uma posição baixa da cabeça. Um pneumoperitônio deve ser estabelecido lentamente e a pressão intra-abdominal deve ser monitorada adequadamente.

Pontos de pressão e proeminências ósseas devem ser adequadamente acolchoados, especialmente em casos de neuropatias sensoriais e cirurgia de maior duração. Precauções semelhantes devem ser seguidas durante o transporte.

Os olhos devem estar devidamente lubrificados e cobertos.

Prováveis interações entre fármacos anestésicos e medicações de uso contínuo

Pacientes com insuficiência adrenal estão em doses de esteróides de manutenção, a síndrome de Cushing pode ser vista como um efeito colateral. As doses de estresse de esteróide são necessárias no período perioperatório e a hidrocortisona é a droga de escolha. A dose de hidocortisona e outros esteróides varia entre diferentes faixas etárias pediátricas e peso corporal [24,25].

Evitar o etomidato, pois diminui a função adrenal por 3-6 horas após a sua administração. Nenhuma interação direta com outros agentes anestésicos é mencionada na literatura.

Procedimento anestesiológico

Anestesia geral com a via aérea sendo fixada com um tubo endotraqueal, de preferência com balonete.

A indução deve ser feita lentamente, administrando-se alíquotas, para evitar súbito colapso cardiovascular ou instabilidade autonômica.

Para a indução em sequência rápida deve ser usada uma droga de início rápido como o rocurônio para minimizar a aspiração. Na presença de miopatias, cuidado no uso de succinilcolina, devido ao *upregulation* dos receptores extra-juncionais da acetilcolina (resposta hipercalêmica). Bloqueadores não despolarizantes também podem induzir uma resposta variável nesses casos. Titule a dose de acordo com a monitorização neuromuscular.

Manutenção da euglicemia no intraoperatório por infusão de insulina, se necessário. Algumas vezes, uma infusão de esteróides também pode ser necessária.

Monitorização específica ou adicional

Monitoramento intraoperatório de glicose sérica, eletrólitos (sódio, potássio).

Monitoramento invasivo da pressão arterial para a detecção precoce de quaisquer distúrbios autonômicos ou hemodinâmicos.

Uso de monitoramento neuromuscular para titular a dosagem ideal de medicamentos bloqueadores neuromusculares e otimizar a reversão e a recuperação adequada.

Monitoramento da pressão intra-abdominal, monitoramento da pressão de pico das vias aéreas, produção de urina e fração expirada de CO₂ para detectar complicações do pneumoperitônio.

Complicações possíveis

Crise adrenal levando a hipotensão ou choque, hipoglicemia, hiponatremia ou hipercaliemia (devido ao estresse da cirurgia, infecção ou trauma).

Hiperglicemia devido a esteróides.

Cuidados pós-operatórios

Elevação da extremidade cefálica e profilaxia da aspiração. Pomada lubrificante tópica para os olhos.

Os esteróides devem ser titulados para a dosagem de manutenção. Alívio da dor com paracetamol intravenoso ou supositório retal.

Problemas agudos relacionados à doença e seus efeitos na anestesia e recuperação

Crise adrenal, hipotensão e choque devem ser diferenciados de efeitos adversos ou efeitos colaterais de agentes anestésicos ou efeitos hemodinâmicos da disfunção autonômica.

Em coma hiperglicêmico, a hiponatremia pode ser uma causa de retardo na recuperação da anestesia. A hipercaliemia pode levar a arritmias graves ou até parada cardíaca.

Anestesia ambulatorial

Pode ser praticada para procedimentos recorrentes de curta duração, como dilatações por balão esofágico.

Anestesia obstétrica

Não há muita literatura sobre anestesia neste grupo de pacientes. Os pacientes são encontrados principalmente na faixa etária pediátrica.

Referências e links da internet

- 1. Allgrove J, Clayden GS, Grant DB, Macaulay JC. Familial glucocorticoid deficiency with achalasia of the cardia and deficient tear production. Lancet 1978;1:1284-1286
- 2. Sarathi V, Shah NS. Triple-A syndrome. Adv Exp Med Biol 2010; 685:1-8
- 3. Bhargavan PV, Kumar KM, Rajendran VR, Fassaludeen AS. Allgrove syndrome A syndrome of primary adrenocortical insufficiency with achalasia of the cardia and deficient tear production. J Assoc Physicians India 2003;51:726-728
- 4. Kasar PA, Khadilkar VV, Tibrewala VN. Allgrove syndrome. Indian J Pediatr 2007;74:959-961
- 5. BG Arun, BS Deepak, and Murali R Chakravarthy. Anaesthetic management of a patient with Allgrove syndrome. Indian J Anaesth 2014;58(6):736–738
- 6. Dhar M, Verma N, Singh RB, Pai VK. Triple A to triple S: From diagnosis, to anesthetic management of Allgrove syndrome. J Clin Anesth 2016;33:141-143
- 7. Ozer AB, Erhan OL, Sumer C, Yildizhan O. Administration of anesthesia in a patient with allgrove syndrome. Case Rep Anesthesiol 2012; 2012:109346
- 8. Gazarian M, Cowell CT, Bonney M, Grigor WG. The "4A" syndrome: Adrenocortical insufficiency associated with achalasia, alacrima, autonomic and other neurological abnormalities. Eur J Pediatr 1995;154:18–23
- 9. Soltani A, Ameri MA, Ranjbar SH. Allgrove syndrome: A case report. Int J Endocrinol Metab 2007;4:160-163
- 10. Ali H A, Murali G, Mukhtar B. Respiratory failure due to achalasia cardia. Respir Med CME 2009, 2:1:40-43
- 11. Teramoto S, Yamamoto H, Yamaguchi Y et.al. Diffuse aspiration bronchiolitis due to achalasia. Chest 2004;125,1: 349–350
- 12. Etemadyfar M, Khodabandehlou R. Neurological manifestations of Allgrove syndrome. Arch Iran Med 2004;7, 3: 225-227
- 13. Weber A, Wienker TF, Jung M, Easton D, Dean HJ, Heinrichs C, et al. Linkage of the gene for the triple A syndrome to chromosome 12q13 near the type II keratin gene cluster. Hum Mol Genet 1996;5:2061-2066
- 14. Aghajanzadeh M, Safarpoor F, Hydayati MH, Kohssari MR, Mashhour MY, Soleymani AS. Allgrove syndrome: Reports of cases and literature review. Saudi J Gastroenterol 2006;12:34-35
- 15. Hines RL, Marschall KE. Adrenal insufficiency. In: Hines RL, editor. Stoelting's Anesthesia and Co-Existing Disease. 5th ed. Philadelphia: Churchill Livingstone, Elsevier; 2008 pp. 436-437.
- 16. Babu K, Murthy KR, Babu N, Ramesh S. Triple A syndrome with ophthalmic manifestations in two siblings. Indian J Ophthalmol. 2007;55:304-306
- 17. Salehi M, Houlden H, Sheikh A, Poretsky L. The diagnosis of adrenal insufficiency in a patient with Allgrove syndrome and a novel mutation in the ALADIN gene. Metabolism 2005;54:200-205
- 18. Ismail EA, Tulliot-Pelet A, Mohsen AM, Al-Saleh Q. Allgrove syndrome with features of familial dysautonomia: a novel mutation in the AAAS gene. Acta Paediatr 2006;95:1140-1143
- 19. Shah A, Shah A. Esophageal achalasia and alacrima in siblings. Indian Pediatr 2006;43:161-163
- 20. Villanueva-Mendoza C, Martínez-Guzmán O, Rivera-Parra D, Zenteno JC. Triple A or Allgrove syndrome. A case report with ophthalmic abnormalities and a novel mutation in the AAAS gene. Ophthalmic Genet 2009;30:45-49
- 21. Grant DB, Barnes ND, Dumic M, et al. Neurological and adrenal dysfunction in the adrenal insufficiency/alacrima/achalasia (3A) syndrome. Arch Dis Child 1993;68:779-782
- 22. Fernbach SK, Poznanski AK. Pediatric case of the day. Triple A syndrome: achalasia, alacrima and ACTH insensitivity. Radiographics 1989;9:563-564
- 23. Etemadyfar M, Khodabandehlou R. Neurological manifestations of Allgrove syndrome. Arch Iran Med 2004;7:225-227
- 24. Migeon C. Adrenal steroid therapy. In: Rudolph A, Barnett H, Einhorn A, eds. Pediatrics, 16th edn. Appleton-Century-Crofts New York:, 1977:1651–1662
- 25. Chilren's hospital of Philadelphia [homepage on the internet]. Pathway for the Child at Risk for HPA Suppression: Stress Steroid Dosing and Weaning Recommendations. [updated 2016 may; cited 2018 december]. Available from: http://www.chop.edu/clinical-pathway/steroidstress-dosing-and-weaning-clinical-pathway

- 26. A. Tebaibia MA Boudjella F, Benmediouni M, Lahcene N. Oumnia. Familial achalasia associated or not to Allgrove syndrome: about 18 families. United European Gastroenterol J 2013; 1(1S) A1–A134 (OP 088: A27)
- 27. A. Tebaibia MA Boudjella F, Benmediouni M, Lahcene N. Oumnia. Genotypic heterogeneity and clinical features in Allgrove syndrome: about 78 cases. United European Gastroenterol J;1(1S) A1–A134 (OP 091: A28).

Data da última modificação: Agosto de 2018

Esta recomendação foi preparada por:

Autor(es)

Dr. Mridul Dhar, anaesthesiologist, All India Institute of Medical Sciences, Rishikesh, India mriduldhar@hotmail.com

Divulgação (ões) Os autores não têm interesse financeiro ou outro interesse concorrente a divulgar. Esta recomendação não foi financiada.

Esta recomendação foi revisada por:

Revisores

Dr. B.G. Arun, anaesthesiologist, Fortis Hospital, Bengaluru, Karnataka, India drbgarun@yahoo.co.in

Prof. Amar Tebaibia, internist, Kouba Hospital, University of Algiers 1, Algiers, Algeria tebaibia@hotmail.com

Divulgação (ões) Os revisores não têm interesse financeiro ou outro interesse concorrente a divulgar.

Esta recomendação foi traduzida para o português por:

Dr. Carlos R Degrandi Oliveira, Anestesiologista, MD, TSA, MSc Santos, Brasil degrandi@gmail.com